

Synthesis and Reactivity of Imide-Derived Bisvinyl Phosphates. Reactivity of 2,6-Disubstituted 1,4-Dihydropyridines

Deborah Mousset, Isabelle Gillaizeau,* Andréa Sabatié, Pascal Bouyssou, and Gérard Coudert*

*ICOA, UMR 6005, Uni*V*ersite*´ *d'Orle*´*ans, BP 6759, 45067 Orle*´*ans Cedex 2, France*

*isabelle.gillaizeau@uni*V*-orleans.fr; gerard.coudert@uni*V*-orleans.fr.*

*Recei*V*ed April 6, 2006*

Symmetrical and unsymmetrical 2,6-disubstituted dihydropyridines were prepared in high yields under mild conditions using the Suzuki and Stille Pd-catalyzed coupling reactions of imide-derived bisvinyl phosphates with a range of aryl, heteroaryl, and alkenyl moieties. The alkylation reaction at C-4 easily afforded original tri- and tetrasubstituted dihydropyridines. Hydrolysis of the latter under acidic condition provided efficiently either open-chain 1,5-diketones or di- or trisubstituted pyridines.

Introduction

Enol phosphates represent versatile intermediates in the construction of complex organic molecules.¹ The ability to easily convert enol phosphates into a myriad of functional motifs of synthetic relevance is well-known. In particular, this moiety has proved to be a robust and versatile partner for cross-coupling reactions mediated by $Pd(0)$ and $Ni(0)$. Enol phosphates have in fact, in a few cases, proved to work better in such reactions than their triflate counterparts owing to higher stability, higher reaction yield, and easier work up. The ability of enol phosphates to undergo these cross-coupling reactions in the presence of various heteroatoms makes them attractive functional groups for the construction of various substituted heterocyclic systems. Enol phosphates were used in Suzuki, $\frac{1}{11}$, $\frac{1}{11}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{3}$ Sonogashira,⁴ Negishi,⁵ and Kumada-Tamao⁶ reactions and were also applied in total synthesis.7

In a recent paper,⁸ using a methodology developed in our group, we described an efficient synthesis of 2,6-disubstituted dihydropyridines under mild conditions using the Suzuki and Stille Pd-catalyzed coupling reactions of imide-derived bisvinyl phosphates with a range of aryl, heteroaryl, and alkenyl moieties. As part of our interest in using readily available enol phosphates in the synthesis of new heterocyclic compounds, we wish to report herein a general methodology for the synthesis of

(4) cf. References 2a and 3a.

(5) Jiang, J. L.; Devita, R. J.; Doss, G. A.; Goulet, M. T.; Wyvratt, M. J. J. Am. Chem. Soc. 1999, 121, 593-594.

(7) (a) Takakura, H.; Sasaki, M.; Honda, S.; Tachibana, K. *Org. Lett.* **²⁰⁰²**, 2771-2774.

(8) Mousset, D.; Gillaizeau, I.; Hassan, J.; Lepifre, F.; Bouyssou, P.; Coudert, G. *Tetrahedron Lett.* **²⁰⁰⁵**, *⁴⁶*, 3703-3705 and references cited herein.

 (1) (a) Nicolaou, K. C.; Shi, G. O.; Gunzner, J. L.; Gärtner, P.; Yang, Z. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 5467-5468. (b) Buon, C.; Chacun-Lefevre, L.; Rabot, R.; Bouyssou, P.; Coudert, G. *Tetrahedron* **²⁰⁰⁰**, *⁵⁶*, 605-614. (c) Sasaki, M.; Ishikawa, M.; Fuwa, H.; Tachibana, K. *Tetrahedron* **2002**, *⁵⁸*, 1889-1911. (d) Coe, J. W*. Org. Lett.* **²⁰⁰⁰**, *²*, 4205-4208. (e) Lepifre, F.; Clavier, S.; Bouyssou, P.; Coudert, G. *Tetrahedron* **²⁰⁰¹**, *⁵⁷*, 6969- 6975. (f) Wu, J.; Yang, Z. *^J*. *Org*. *Chem*. **²⁰⁰¹**, *⁶⁶*, 7875-7878. (g) Moraes, D. N.; Barrientos-Astigarraga, R. E.; Castelani, P.; Comasseto, J. V. Tetrahedron 2000, 56, 3327-3337. (h) Bouyssou, C. B.; Coudert, G. *Tetrahedron* **²⁰⁰⁰**, *⁵⁶*, 3327-3337. (h) Bouyssou, C. B.; Coudert, G. *Tetrahedron Lett*. **¹⁹⁹⁹**, *⁴⁰*, 701-702. (i) Nan, Y.; Yang, Z. *Tetrahedron Lett*. **¹⁹⁹⁹**, *⁴⁰*, 3321-3324. (j) Fugami, K.; Oshima, K.; Utimoto, K. *Chem*. *Lett*. **¹⁹⁸⁷**, 2203-2206. (k) Takai, K.; Sato, M.; Oshima, K.; Nozaki, H. *Bull*. *Chem*. *Soc*. *Jpn*. **¹⁹⁸⁴**, 57, 108-115. (l) Sato, M.; Takai, K.; Oshima, K.; Nozaki, H. *Tetrahedron Lett*. **¹⁹⁸¹**, *²²*, 1609-1612. (m) Takai, K.; Oshima, K.; Nozaki, H. *Tetrahedron Lett*. **¹⁹⁸⁰**, *²¹*, 2531-2534.

^{(2) (}a) Lo Galbo, F.; Occhiato, E. G.; Guarna, A.; Faggi, C. *J. Org. Chem.* **²⁰⁰³**, *⁶⁸*, 6360-6368. (b) Huffman, M. A.; Yasuda, N. *Synlett* **¹⁹⁹⁹**, ⁴⁷¹-473. (c) Campbell, I. B.; Guo, J.; Jones, E.; Steel, P. G. *Org. Biomol. Chem.* **²⁰⁰⁴**, *²*, 2725-2727. (d) Larsen, U. S.; Martiny, L.; Begtrup, M. *Tetrahedron Lett.* **²⁰⁰⁵**, 46, 4261-4263. (3) (a) Nicolaou, K. C.; Shi, G. Q.; Namoto, K.; Bernal, F. *Chem.*

Commun. **¹⁹⁹⁸**, 1757-1758.

J. *J. Am. Chem. Soc.* **¹⁹⁹⁹**, *¹²¹*, 593-594. (6) (a) Liao, Y.; Hu, Y. H.; Wu, H.; Zhu, Q.; Donovan, M.; Fathi, R.; Yang, Z. *Curr. Med. Chem.* **²⁰⁰³**, 10, 2285-2316. (b) Wu, J.; Yang, Z. *J. Org. Chem.* **²⁰⁰¹**, 66, 7875-7878. (c) Miller, J. A. *Tetrahedron Lett.* **²⁰⁰²**, *⁴³*, 7111-7114. (d) Cahiez, G.; Avedissian, H. *Synthesis* **¹⁹⁹⁸**, 1199- 1205. (e) Hayashi, T.; Fujiwa, T.; Okamoto, Y.; Katsuro, Y.; Kumada, M. *Synthesis* **¹⁹⁸¹**, 1001-1002.

polysubstituted dihydropyridines and/or pyridines which are of great interest as intermediates in medicinal chemistry.9 Dihydropyridines (DHPs) exhibit interesting features that make them attractive for use in organic synthesis. Furthermore, only a few examples of 2,6-disubstituted dihydropyridines have been described so far, and most of them have been synthesized from the corresponding pyridine or pyridinium salt. 10

In this paper, we give a full account of our investigations which focus primarily on the preparation of 2,6-disubstituted dihydropyridines derivatives symmetrical or not by using Pdcatalyzed coupling reactions. Second, we also investigated the reactivity of the dihydropyridine by performing functionalization reactions at C-4 and by applying hydrolysis conditions.

Results and Discussion

As previously described, 8 the cross-coupling reactions of bisenolphosphates **1** and **2**, obtained from the corresponding glutarimides via the bislithium enolate, afforded the 2,6 disubstituted dihydropyridines **³**-**¹²** in high yields. Table 1 summarizes the most significant experiments of this study. The boronic acids or tin reagents are commercially available except for 2-methylstannylbenzodioxine (entry 2, Table 1).3b The *N*-Boc group was initially used as an electron withdrawing protecting group since it is easily removable under acidic conditions.

After the successful preparation of symmetrical 2,6-disubstituted dihydropyridines, we turned our attention to more interesting unsymmetrical dihydropyridine derivatives. To achieve this goal, we first investigated the two-step Suzuki-Miyaura reactions. The key step was the selective monocoupling reaction. Unfortunately, by reducing first the quantity of boronic acid under the same conditions as above $(1.1 \text{ equiv PhB(OH)}_2, 5)$ mol % PdCl₂(PPh₃)₂, 2 equiv Na₂CO₃ (2M), EtOH, reflux 30 min) or by applying Hirao and Sakurai conditions¹² on bisvinyl phosphate $2(110 \text{ mol } %$ PhB(OH)₂, 1.5 mol % Pd₂(dba)₃, 3.6 mol % Cy₃P, 200 mol % Cs₂CO₃ in dioxane at 85 °C during 24 h) we were not able to isolate the desired monosubstituted dihydropyridine derivative. After only 1 h, we recovered bissubstituted product **11** (in 40% yield) accompanied by unreacted starting material **2** (in 50% yield). The monosubstituted dihydropyridine derivative appeared indeed to be more reactive than the starting bisvinyl phosphate **2**. Thus, we decided to introduce both substituents successively (Scheme 1. To this aim, we first prepared monovinyl phosphate **14** by treatment of the $N-\text{Boc}$ glutarimide 13^8 with LiHMDS (1.2 equiv) at -78 °C followed by the addition of diphenyl chlorophosphate. After workup and purification by chromatography, compound **14** was isolated in 74% yield. It should be noted that we selected the spiro derivative **13** for its greater stability than its nonspiro

TABLE 1. Suzuki and Stille Coupling Reactions on Bisvinyl Phosphates 1 and 2*^d*

^a Conditions: 10 mol % Pd(PPh3)4, 4 equiv RSnBu3, 3 equiv LiCl, THF, 3 h, reflux.¹¹ *b* Conditions: (i) 10 mol % PdCl₂(PPh₃)₂ THF, RT, 10 min; (ii) 3 equiv RB(OH)₂, 2 equiv Na₂CO₃ 2 M, EtOH, reflux, 3 h. ^c Reaction time: 30 min. *^d* All the compounds were fully characterized by analytical and spectroscopic methods.

counterpart. We then attempted the first Suzuki coupling reaction under similar conditions. The monosubstituted derivative **15** was then isolated in 77% yield. Starting from the latter, and by using the same protocol, enol phosphate **16** was synthesized in 78% yield. A second Suzuki coupling reaction enabled us to obtain the desired unsymmetrical 2,6-dihydropyridines **17a**-**^f** in remarkably high yields (cf. Table 2). In the case of compounds **17a**,**b**, we also had the opportunity to test a new palladium catalyst prepared by Nolan's group.13 Under these conditions (1.1 equiv PhB(OH)₂, 10 mol % (IMes)Pd(η ³-2-methylallyl)-

⁽⁹⁾ Chhillar, A. K.; Arya, P.; Mukherjee, C.; Kumar, P.; Yadav, Y.; Sharma, A. K.; Yadav, V.; Gupta, J.; Dabur, R.; Jha, H. N.; Watterson, A. C.; Parmarn V. S.; Prasad, A. K.; Shrama, G. *Bioorg. Med. Chem.* **2006**, *¹⁴*, 973-981.

^{(10) (}a) For dihydropyridines chemistry reviews see Lavilla, R. *J. Chem. Soc., Perkin Trans. 1* **²⁰⁰²**, 1141-1156. (b) Lounasmaa, M.; Tolvanen, A. In *Comprehensive Heterocyclic Chemistry II*; Katrisky, A. R., Rees, C. W., Scriven, E. F. V.; Eds.; Pergamon: Oxford, U.K., 1996; Vol*.* 5, p 135. (c) Charrette, A. B.; Grenon, M.; Lemire, A.; Pourashraf, M.; Martel, J. *J. Am. Chem. Soc.* **²⁰⁰¹**, *¹²³*, 11829-11830. (d) Lavilla, R.; Bernabeu, M. C.; Carranco, I.; Diaz, J. L. *Org. Lett*. **²⁰⁰³**, *⁵*, 717-720. (e) Ishar, M. P. S.; Kumar, K.; Kaur, S.; Kumar, S.; Girdhar, N. K.; Sachar, S.; Marwaha, A.; Kapoor, A. *Org. Lett*. **2001**, *3*, 2133-2136. (f) Jakubowicz, K; Wong, Y.-S.; Chiaroni, A.; Bénéchie, M.; Marazano, C. *J. Org. Chem.* **2005**, *70*, 7780–7783 7780-7783.
(11) Scott

⁽¹¹⁾ Scott, W. J.; Stille, J. K. *J. Am. Chem. Soc*. **¹⁹⁸⁶**, *¹⁰⁸*, 3033-3040. (12) Mao, L.; Sakurai, H.; Hirao, T. *Synthesis* **²⁰⁰⁴**, 2535-2539.

⁽¹³⁾ Navarro, O.; Oonishi, Y.; Kelly, R. A.; Stevens, E. D.; Briel, O.; Nolan, S. P. *J. Organomet. Chem.* **²⁰⁰⁴**, 689, 3722-3727 and references cited therein.

a (a) (i) 1.2 equiv LiHMDS, THF, -78 °C, 1.5 h; (ii) 1.2 equiv $CIP(O)(OPh)_2$, -78 °C, 2 h (74%). (b) (i) 5 mol % PdCl₂(PPh₃)₂, THF, TA, 10 min; (ii) 2.5 equiv PhB(OH)₂, 2 equiv Na₂CO₃ (2 M), EtOH, reflux 2 h (77%). (c) (i) 1.2 equiv LiHMDS, THF, -⁷⁸ °C, 1.5 h; (ii) 1.2 equiv $CIP(O)(OPh)_2$, -78 °C, 1 h (78%). (d) (i) 5 mol % PdCl₂(PPh₃)₂, THF, TA, 10 min; (ii) 2.5 equiv $RB(OH)_2$, 2 equiv Na_2CO_3 (2 M), EtOH, reflux 2 h. (e) 5 mol % Pd(PPh3)4, 2 equiv RSnBu3 or RSnMe3, 1.5 equiv LiCl, THF, 2 h, reflux. (cf. Table 2).

TABLE 2. Synthesis of Unsymmetrical 2,6-Dihydropyridine Derivatives 17a-**f from the Monovinyl Phosphate 16**

Entry	Reagents	Products	Yield $(\%)$
1	(OH) ₂ B S	17a	80
$\overline{2}$	(OH) ₂ B	17 _b	100
3	(OH) ₂ B	17c	79
4	(OH) ₂ B ი	17d	48
5	$\mathsf{C_4H_9}$ Bu ₃ Sn	17e	50
6	Me ₃ Sn n	17f	52

 $Cl₁¹²$ 2 equiv Na₂CO₃ (2M), EtOH, reflux 30 min) we successfully obtained the desired substituted dihydropyridines **17a** and **17b**, respectively, in 75% and 70% yield. To the best of our knowledge, it is the first application of this catalyst in the palladium coupling reaction onto a vinyl phosphate moiety.

Our next aim was then to functionalize the C-4 position. Creating variations of these 1,4-dihydropyridines is an important task. To the best of our knowledge, there is no literature precedent for the direct alkylation of 1,4-dihydropyridines at the C-4 position. Some alkylations are described on the piperidine skeleton but in each case via the 2-methoxy-1,2,5,6 tetrahydropyridine moiety. Matsumura et al. reported the regioselective introduction of substituents at C-4 of a piperidine ring by using the addition of a Grignard reagent in the presence of CuBr14 or by the stereoselective addition of dimethyl alkylmalonate in the presence of TiCl₄ in Et_3N/CH_2Cl_2 .¹⁵ Torii et al. also described an easy access to 4-hydroxy-1,2,3,4-

Article

TABLE 3. FunctionalizAtion Reactions at C-4 of Dihydropyridine 6*a*

	∵ Boc 6		R ∣ Вос $18a-g$	
	Entry Electrophiles	R	Products	Yield $(\%)$
$\mathbf{1}$	Methyl iodide	CH ₃	18a	97
$\overline{2}$	Allyl bromide		18 _b	74
3	Benzaldehyde	OH	18c	75
4	Acetone	OН CH ₃ H_3C	18d	100
$\overline{4}$	4-Methoxy-	OH		
	benzaldehyde	OMe	18 _e	65
5	Cyclohexanone	он	18f	80
6	Methyl vinyl	ОН	18 _g	
	ketone	CH ₃		41

a Reagents and conditions: (i) 1.1 equiv *n*-BuLi, THF, -78 °C, 5 min; (ii) 3 equiv electrophile, -78 °C, 2 h; (iii) NH₄Cl sat.

tetrahydropyridines by an acid-catalyzed rearrangement under mild conditions.16

Hence, we decided to introduce various substituents at C-4 by preparing the 4-lithio derivative of 2,6-diphenyl-1,4-dihydropyridine **6**, chosen as a model compound. The best results were obtained using 1.1 equiv of *n*-BuLi at -78 °C for only 5 min. The 4-lithio derivative was trapped with a range of electrophiles (3 equiv) leading to the required 4-substituted derivatives **18a**-**^g** in high yields (cf. Table 3). The use of another base such as LDA resulted in a dramatic decrease of the yield because of unreacted starting material. Compound **6** was found to be quite sensitive to basic conditions. Thus, if reaction times were superior to 5 min, it also resulted in lower overall yields.

Encouraged by these promising results, we then explored the bisfunctionalization reaction at the C-4 position. A first attempt was made starting from the 4-methyl derivative **18a**. Optimal conditions were determined to be 1.1 equiv of t -BuLi at -78 °C for only 5 min, followed by the addition of the second electrophile (3 equiv). In this case, using iodomethane as the electrophile, 4,4-dimethyl-2,6-diphenyl-dihydropyridine **19a** was isolated in quantitative yield (cf. Table 4). However, variations in the nature of the electrophile had a dramatic influence on (14) Shono, T.; Terauchi, J.; Ohki, Y.; Matsumura, Y. *Tetrahedron Lett.*

¹⁹⁹⁰, *³¹*, 6385-6386.

⁽¹⁵⁾ Matsumura, Y.; Yoshimoto, Y.; Horikawa, C.; Maki, T.; Watanabe, M. *Tetrahedron Lett.* **¹⁹⁹⁶**, *³⁷*, 5715-5718.

⁽¹⁶⁾ Torii, S.; Inokuchi, T.; Akahosi, F.; Kubota, M. *Synthesis* **1987**, ²⁴²-245.

TABLE 4. Second Functionalization at C-4 of Dihydropyridines 18A and 18b*^a*

a Reagents and conditions: (i) 1.1 equiv *t*-BuLi, THF, -78 °C, 5 min; (ii) 3 equiv electrophile, 2 h, -78 °C; (iii) NH₄Cl sat. ^{*b*} The bisallylic compound **19d** could also be obtained by using a "one pot" procedure without isolation of the monocoupling derivative **18b** (cf. experimental part).

SCHEME 2. Metathesis Cyclization Reaction on the Bisallylic Compound 19d*^a*

a Conditions and reagents: Ruthenium catalyst¹⁶ (10 mol %), toluene, 60 °C, 15 h.

the reactivity of these dihydropyridine derivatives (cf. Table 4, entries $2-3$). For more hindered groups, the best strategy was to carry out the first step with the allyl group for example. (Table 4, entries $4-6$).

As we had it in hand, we decided to perform a ring-closing metathesis reaction on bisallylic compound **19d**. Treatment of the latter using a second generation ruthenium catalyst¹⁷ afforded the desired cyclized derivative **20** in quantitative yield (cf. Scheme 2). Finally starting from commercially available glutarimide, the original unsaturated spiro derivative **20**, an unsaturated analogue of compound **11,** was obtained in only five steps and in 48% global yield.

With the goal of valorising these substituted dihydropyridines, we then examined their behavior under acidic conditions.

Treatment of various dihydropyridines with 3 N HCl in ethyl acetate promoted ring opening and gave the corresponding openchain diketones in very good yields (Table 5). This methodology provides easy access to original 1,5-diketones not described yet or not otherwise easily accessible. In addition, treatment of dihydropyridines derivatives with anhydrous TFA afforded the corresponding di- or trisubstituted pyridines **22a**-**^f** in high yields (See Table 6).

In conclusion, we demonstrated the usefulness of synthesizing enol phosphates derived from imides. These compounds are versatile starting materials for palladium catalyzed crosscoupling reactions giving efficient access to a range of 2,6 disubstituted 1,4-dihydropyridines. On the latter's C-4 position, selective mono- or bissubstitution was achieved in good yield. This work demonstrates the potential of our methodology. Moreover, hydrolysis under acidic conditions of the dihydropyridine derivatives provides a direct and efficient route either to original 1,5-diketones or to various di- or trisubstituted pyridines. Because different patterns of substitution on the heterocycle are compatible with the reaction conditions, the proposed methodology could be very useful for the synthesis of natural products and biologically active compounds containing piperidine moieties. Indeed, the application of this methodology to the synthesis of more complex heterocyclic structures is currently under investigation in our laboratory via the study of the reactivity of the enamide double bond.

⁽¹⁷⁾ Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. *J. Am. Chem. Soc.* **¹⁹⁹⁹**, *¹²¹*, 2674-2678.

Experimental Section

Only representative procedures and characterizations of the products are described here. Full details can be found in the Supporting Information.

Author: The chemical abbreviation P.E. was used in the paragraphs below. If this is not polyethylene (PE), please define

General Procedure (A) for the Stille Coupling Reaction. 1-(*tert***-Butoxycarbonyl)-2,6-di-(1,4-benzodioxin-2-yl)-1,4-dihydropyridine** (**4**). To a stirred solution of bisvinyl phosphate **1** (0.74 mmol, 500 mg) in THF (2.5 mL), trimethyl(benzodioxin)tin (3.69 mmol, 1.09 g) and anhydrous lithium (4.43 mmol, 188 mg) were added under argon, then the flask was evacuated and backfilled with argon three times. Under argon, $Pd(PPh₃)₄$ (0.074 mmol, 51) mg) was added, and the mixture was refluxed for 3 h. After cooling to room temperature, the reaction mixture was diluted with water; ethyl acetate was then added. The organic layer was separated and dried (MgSO4), and the solvent evaporated under reduced pressure. The residue was purified by flash column chromatography (silica gel, PE/EtOAc 8:2) to afford **4** (66% yield) as a yellow solid: mp 99-100 °C. ¹H NMR (250 MHz, CDCl₃): δ (ppm) 1.44 (s, 9H); 2.75 (t, 2H, $J = 5$ Hz); 5.93 (t, 2H, $J = 5$ Hz); 6.17 (s, 2H); 6.67-7.00 (m, 8H). 13C NMR (250 MHz; CDCl3): *δ* (ppm) 24.1, 28.1, 82.5, 116.2, 116.3, 117.3, 124.1, 124.2, 124.4, 134.2, 134.6, 142.2, 142.7, 152.3. IR *ν*max (KBr): 2926, 2854, 1751, 1600, 1494, 1463. MS (IE): m/z 446 [M + H]⁺.

General Procedure (B) for the Suzuki Coupling Reaction. 1-(*tert***-Butoxycarbonyl)-2,6-diphenyl-1,4-dihydropyridine** (**6**). To a solution of bisvinyl phosphate **1** (0.74 mmol, 500 mg) in THF

)C Article

 (2.5 mL) under argon, PdCl₂(PPh₃)₂ $(0.074 \text{ mmol}, 51 \text{ mg})$ was added. The flask was evacuated and backfilled with argon three times, and the mixture was stirred during 15 min. Then, phenylboronic acid (3.69 mmol, 449 mg), 2M $Na₂CO₃$ (aqueous solution) (1.25 mL), and few drops of EtOH were added. The mixture was refluxed for 30 min. After cooling, ethyl acetate was added; the organic layer was separated and dried (MgSO4). After evaporation of the solvent, the residue was purified by flash column chromatography (silica gel, PE then PE/EtOAc 8:2) to afford **6** (88% yield) as a white solid: mp $126-127$ °C. ¹H NMR (250 MHz, CDCl₃): *δ* (ppm) 1.03 (s, 9H); 2.94 (t, 2H, *J* = 5 Hz); 5.78 (t, 2H, *J* = 5 Hz); 7.24-7.40 (m, 6H); 7.52-7.57 (m, 4H). 13C NMR (250 MHz; CDCl3): *δ* (ppm) 24.9, 27.6, 81.3, 116.4, 125.4, 127.3, 128.3, 138.9, 142.6, 152.3. IR *ν*max (KBr): 2971, 2930, 2812, 1716, 1670, 1629, 1598. MS (IE): *^m*/*^z* 354.50 [M ⁺ H]+. HRMS (IE): *^m*/*^z* calcd for [C22H23-CO2-*t*-Bu]+, 232.1126; found, 232.1112.

1-(*tert***-Butoxycarbonyl)-2,6-dithianaphten-2-yl-1,4-dihydropyridine (7).** The Suzuki coupling reaction was carried out as described in the general procedure (B) by using thianaphtene-2 boronic acid. The reaction was completed in 3 h. After purification by flash column chromatography (silica gel, PE then PE/EtOAc 9:1), the desired compound **7** was isolated as a yellow solid (83% yield): mp 149-¹⁵⁰ °C. 1H NMR (250 MHz, CDCl3): *^δ* (ppm) 0.82 (s, 9H); 3.08 (t, 2H, $J = 5$ Hz); 5.83 (t, 2H, $J = 5$ Hz); 7.32-7.44 (m, 4H); 7.49 (s, 2H); 7.85-7.88 (m, 2H); 8.08-8.11 (m, 2H). 13C NMR (250 MHz; CDCl3): *δ* (ppm) 24.7, 27.5, 81.2, 116.9, 120.7, 122.2, 122.8, 122.9, 123.1, 123.3, 124.3, 124.4, 124.7, 124.8, 135.1, 136.4, 137.9, 140.2, 141.0, 152.1. IR $ν_{\text{max}}$ (KBr): 3018, 2976, 2938, 1700, 1640, 1571, 1545. MS (IE): *m*/*z* 344.05 [M-• CO2*t-*Bu]⁺. HRMS (IE): m/z [M-[•]CO₂*t*-Bu]⁺ calcd for C₂₁H₁₄NS₂, 344.0567; found, 344.0562.

8-(*tert***-Butoxycarbonyl)-7,9-diphenyl-8-aza-spiro[4.5]deca-6,9** diene (11). The Suzuki coupling reaction was carried out as described in the general procedure (B) by using phenylboronic acid. The reaction was completed in 3 h. After purification by flash column chromatography (silica gel, PE then PE/EtOAc 9:1), the desired compound **11** was isolated as a white solid (85% yield): mp 137-¹³⁸ °C. 1H NMR (250 MHz, CDCl3): *^δ* (ppm) 1.03 (s, 9H); 1.74-1.82 (m, 8H); 5.67 (s, 2H); 7.25-7.40 (m, 6H); 7.54-7.57 (m, 4H). ¹³C NMR (250 MHz; CDCl₃): δ (ppm) 24.0; 27.6; 40.8; 45.6; 81.1; 125.5; 126.4; 127.2; 128.2; 139.0; 140.5; 152.3. IR *ν*max (KBr): 3017, 2956, 2874, 1707, 1520, 1494, 1450. MS (IE): *m*/*z* 286.50 [M-• CO2*t-*Bu]+. HRMS (IE): *m*/*z* [M-• CO2*t-*Bu]+ calcd for $C_{21}H_{20}N$, 286.1595; found, 286.1576.

8-(*tert***-Butoxycarbonyl)-7,9-dithianaphten-2-yl-8-aza-spiro- [4.5]deca-6,9-diene (12).** The Suzuki coupling reaction was carried out as described in the general procedure (B) by using thianaphtene-2-boronic acid. The reaction was completed in 3 h. After purification by flash column chromatography (silica gel, PE then PE/EtOAc 8:2), the desired compound **11** was isolated as an orange solid (70% yield): mp 142-143 °C. ¹H NMR (250 MHz, CDCl₃): *δ* (ppm) 1.17 (s, 9H); 1.82 (s, 8H); 5.98 (s, 2H); 7.28-7.37 (m, 4H); 7.42 (s, 2H); 7.74-7.82 (m, 4H). 13C NMR (250 MHz; CDCl3): *^δ* (ppm) 24.3, 27.8, 40.4, 46.4, 82.1, 119.7, 123.3, 123.6, 124.3, 124.4, 124.9, 128.8, 135.8, 139.2, 140.1, 152.0. IR *ν*max (KBr): 3077, 2963, 2874, 1718, 1593, 1489, 1457. MS (IE): m/z 401.50 [M- $^{\bullet}CO_{2}t$ -Bu]⁺. HRMS (IE): m/z [M-[•]CO₂*t*-Bu]⁺ calcd for C₂₅H₂₀NS₂, 398.1037; found, 398.1008.

9-{**(Phenyloxy)-[bisphosphoryl]oxy**}**-8-(***tert***-butoxycarbonyl)- 8-aza-spiro[4.5]deca-9-en-7-one (14).** To a solution of 8-(*tert*butoxycarbonyl)-7,9-dioxo-8-aza-spiro[4.5]decane **13**⁸ (0,75 mmol, 200 mg) in THF (7 mL) at -78 °C under argon, LiHMDS (0.9 mmol, 1 M in THF, 0.9 mL) was added dropwise. After being stirred for 1.5 h at -78 °C, a solution of diphenyl chlorophosphate $(0.9 \text{ mmol}, 0.186 \text{ mL})$ in THF (3 mL) was added. After 1 h at -78 $\rm{^{\circ}C}$, the reaction was quenched by the slow addition of H₂O. Ethyl acetate was then added, the organic layer was separated and dried (MgSO4), and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (silica gel, toluene/EtOAc 9:1 with 0.5% Et₃N) to afford the monovinyl phosphate **13** (74%) as a colorless oil. ¹H NMR (250 MHz, CDCl₃): *δ* (ppm) 1.49 (s, 9H); 1.50–1.65 (m, 8H); 2.41 (s, 2H); 5.27 (d, 1H, $J = 2.2$ Hz); 7,22–7,26 (m, 6H); 7,33–7,39 (m, 4H). ¹³C NMR (250 MHz; CDCl₃): δ (ppm) 23.7, 27.7, 38.5, 41.1, 44.0, 85.3, 103.6, 103.7, 120.1, 120.2, 126.0, 130.1, 138.5, 150.4, 168.8. IR *ν*max (NaCl film): 3017, 2962, 2875, 1780, 1741, 1698, 1489, 1456, 1343. MS (IS): m/z 500.51 [M + H]⁺.

8-(*tert***-Butoxycarbonyl)-9-phenyl-8-aza-spiro[4.5]deca-9-en-7-one (15).** To a solution of monovinyl phosphate **14** (1.8 mmol, 900 mg) in THF (10 mL) under argon, $PdCl₂(PPh₃)₂$ (0.18 mmol, 75 mg) was added. The flask was evacuated and backfilled with argon three times, and the mixture was stirred during 15 min. Then, phenylboronic acid (4.51 mmol, 550 mg), 2 M Na₂CO₃ (aqueous) (2.9 mL), and a few drops of EtOH were added. The mixture was refluxed for 2 h. After the mixture cooled, ethyl acetate was added, and the organic layer was separated and dried (MgSO4). After evaporation of the solvent, the residue was purified by flash column chromatography (silica gel, PE then PE/EtOAc/DCM 8:1:1) to afford 14 (77% yield) as a colorless oil. ¹H NMR (250 MHz, CDCl3): *^δ* (ppm) 1.14 (s, 9H); 1.67-1.78 (m, 8H); 2.54 (s, 2H); 5.48 (s, 1H); 7,30-7,36 (m, 5H). 13C NMR (250 MHz; CDCl3): *^δ* (ppm) 24.1, 27.3, 38.2, 42.4, 44.7, 84.0, 122.7, 125.9, 126.0, 128.3, 128.6, 132.4, 137.5, 138.4, 150.3, 170.7. IR $ν_{\text{max}}$ (NaCl film): 3060, 2980, 2847, 1771, 1698, 1493, 1447. MS (IS): *^m*/*^z* 328.50 [M + $H]$ ⁺.

7-{**(Phenyloxy)-[bisphosphoryl]oxy**}**-8-(***tert***-butoxycarbonyl)- 9-phenyl-8-aza-spiro[4.5]deca-6,9-diene (16).** To a solution of compound **15** (0,31 mmol, 100 mg) in THF (8 mL) at -78 °C under argon, LiHMDS (0.52 mmol, 1 M in THF, 0.52 mL) was added dropwise. After stirring for 1.5 h at -78 °C, a solution of diphenyl chlorophosphate (0.46 mmol, 0.95 mL) in THF (3 mL) was added. After 2 h at -78 °C, the reaction was quenched by the slow addition of H_2O . Ethyl acetate was then added, the organic layer was separated and dried (MgSO₄), and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (silica gel, toluene/EtOAc 9:1) to afford the vinyl phosphate **16** (78% yield) as a colorless oil. 1H NMR (250 MHz, CDCl₃): δ (ppm) 1.18 (s, 9H); 1.66–1.71 (m, 8H); 5.26 (d, 1H, $J = 2$ Hz); 5.60 (s, 1H); 7,16–7,45 (m, 15H). ¹³C NMR (250 MHz; CDCl₃): δ (ppm) 21.5, 23.9, 27.8, 40.5, 45.2, 45.3, 111.5, 111.6, 82.3, 120.2, 120.3, 125.3, 125.5, 125.6, 126.2, 127.3, 128.1, 128.2, 129.1, 129.8, 137.8, 137.9, 140.4, 141.4, 141.6, 150.6, 150.7, 151.8, 151.9. IR *ν*max (NaCl film): 2956, 2872, 1731, 1691, 1489, 1456, 1345. MS (IS): *^m*/*^z* 560.60 [M ⁺ H]+.

General Procedure (C) for the Suzuki Coupling Reaction. 7-(Thianaphten-2-yl)-8-(*tert***-butoxycarbonyl)-9-phenyl-8-azaspiro[4.5]deca-6,9-diene (17a)**. To a solution of monovinyl phosphate **16** (0.18 mmol, 100 mg) in THF (1.5 mL) under argon, $PdCl₂(PPh₃)₂$ (0.02 mmol, 7.5 mg) was added. The flask was evacuated and backfilled with argon three times, and the mixture was stirred during 15 min. Then, thianaphtene-2-boronic acid (0.36 mmol, 64 mg), $2 M Na₂CO₃$ (aqueous) (0.5 mL), and a few drops of EtOH were added. The mixture was refluxed for 3 h. After the mixture cooled, ethyl acetate was added, and the organic layer was separated and dried (MgSO₄). After evaporation of the solvent, the residue was purified by flash column chromatography (silica gel, PE then PE/EtOAc 8:2) to afford **17a** (80% yield) as an orange solid: mp 64-65 °C. ¹H NMR (250 MHz, CDCl₃): δ (ppm) 1.02 (s, 9H); 1.70-1.74 (m, 8H); 5.64 (s, 2H); 5.88 (s, 1H); 7,14-7,34 (m, 6H); 7,48-7,52 (m, 2H); 7,64-7,73 (m, 2H). 13C NMR (250 MHz; CDCl₃): δ (ppm) 24.2, 27.7, 40.6, 46.1, 81.6, 119.4, 122.3, 123.6, 124.2, 124.4, 125.6, 126.6, 127.5, 128.3, 128.7, 135.5, 138.7, 139.2, 140.1, 140.9, 142.7, 152.5. IR $ν_{\text{max}}$ (KBr): 3022, 2968, 2864, 1715, 1616, 1502, 1456. MS (IS): *^m*/*^z* 444.50 [M ⁺ H]+. HRMS (IE): m/z [M-[•]CO₂*t*-Bu]⁺ calcd for C₂₃H₂₀NS, 342.1316; found, 342.1332.

General Procedure (D) for the Functionalization Reaction on the C-4 Position of Dihydropyridine (6). 1-(*tert***-Butoxycar-** **bonyl)-4-methyl-2,6-diphenyl-1,4-dihydropyridine (18a).** To a solution of the 1-(*tert*-butoxycarbonyl)-2,6-diphenyl-1,4-dihydropyridine (6) (0.45 mmol, 150 mg) in THF (3 mL) at -78 °C under argon, *n*-BuLi (0.49 mmol, 1.6 M in hexane, 310 *µ*L) was added dropwise. After the mixture was stirred for 5 min at -78 °C, methyl iodide (1.35 mmol, 0.84 mL) was added dropwise, and the mixture was stirred for 2 h at -78 °C. The reaction was quenched by the slow addition of H_2O . Ethyl acetate was then added, the organic layer was separated and dried (MgSO4), and the solvent was evaporated. The residue was purified by flash column chromatography (silica gel, PE/EtOAc 9:1) to afford **18a** (97% yield) as a yellow oil. 1H NMR (250 MHz, CDCl3): *δ* (ppm) 1.02 (s, 9H); 1.28 (d, 3H, $J = 7$ Hz); 3.10-3.22 (m, 1H); 5.62 (d, 2H, $J = 3.5$ Hz); 7.24-7.41 (m, 6H); 7.54-7.57 (m, 4H). ¹³C NMR (250 MHz; CDCl3): *δ* (ppm) 20.7, 27.6, 30.2, 81.2, 123.1, 125.5, 125.9, 127.4, 128.3, 138.9, 141.4, 152.2. IR *ν*max (NaCl film): 2977, 2930, 2872, 1717, 1600, 1578, 1557. MS (IS): *^m*/*^z* 348.30 [M ⁺ H]+. HRMS (IE): m/z [M-HCO₂*t*-Bu]⁺• calcd for C₁₈H₁₅N, 245.1204; found, 245.1178.

4-Allyl-1-(*tert***-butoxycarbonyl)-2,6-diphenyl-1,4-dihydropyridine (18b).** The functionalization reaction was carried out as described in the general procedure (D) by using allyl bromide. After purification by flash column chromatography (silica gel, PE/EtOAc 9:1), the desired compound **18b** was isolated as a yellow solid (74% yield): mp 128-129 °C. ¹H NMR (250 MHz, CDCl₃): *δ* (ppm) 1.02 (s, 9H); 2.35 (t, 2H, $J = 7$ Hz); 3.13-3.20 (m, 1H); 5.08-5.16 (m, 2H); 5.67 (d, 2H, $J = 3.5$ Hz); 5.78-5.95 (m, 1H); 7.24-7.41 (m, 6H); 7.54-7.57 (m, 4H). ¹³C NMR (250 MHz; CDCl₃): *δ* (ppm) 27.6, 35.1, 39.3, 81.3, 117.2, 120.7, 125.6, 127.4, 128.3, 135.7, 138.9, 142.1, 152.1. IR *ν*max (KBr): 2976, 2925, 2889, 1711, 1675, 1634, 1593. MS (IS): *^m*/*^z* 374.30 [M ⁺ H]+. HRMS (IE): *m*/*z* [M-•C₃H₅]⁺ calcd for C₂₂H₂₂NO₂, 332.1650; found, 332.1640.

General Procedure (E) for the second Functionalization Reaction on the C-4 Position of Dihydropyridine (18). 1-(*tert***-Butoxycarbonyl)-4,4-dimethyl-2,6-diphenyl-1,4-dihydropyridine (19a).** To a solution of the 1-(*tert*-butoxycarbonyl)-4-methyl-2,6-diphenyl-1,4-dihydropyridine (**18a**) (0.30 mmol, 104 mg) in THF (2 mL) at -78 °C under argon, *t*-BuLi (0.33 mmol, 1.7 M in hexane, 200 *µ*L) was added dropwise. After the solution was stirred for 5 min at -78 °C, methyl iodide (0.90 mmol, 600 μ L) was added, and the mixture was stirred for 2 h at -78 °C. The reaction was quenched by the slow addition of H_2O . Ethyl acetate was then added, the organic layer was separated and dried (MgSO4), and the solvent was evaporated. The residue was purified by flash column chromatography (silica gel, PE/EtOAc 8:2) to afford **19a** (100% yield) as a white solid: mp $106-107$ °C. ¹H NMR (250) MHz, CDCl₃): δ (ppm) 1.02 (s, 9H); 1.24 (s, 6H); 5.60 (s, 2H); 7.24 -7.40 (m, 6H); 7.56 (d, 4H, $J = 7$ Hz). ¹³C NMR (250 MHz; CDCl3): *δ* (ppm) 27.6, 29.1, 34.1, 81.1, 123.1, 125.6, 127.4, 128.2, 138.9, 139.0, 140.4, 141.4, 152.3. IR *ν*_{max} (KBr): 2969, 2918, 2874, 1707, 1507, 1469, 1450. MS (IS): *^m*/*^z* 362.00 [M ⁺ H]+. HRMS (IE): *^m*/*^z* [M-CH3-CO2*t-*Bu]+• calcd for C18H15N, 245.1204; found, 245.1219.

1-(*tert***-Butoxycarbonyl)-4-allyl-4-methyl-2,6-diphenyl-1,4-dihydropyridine (19b).** Starting from the compound **18a**, the second functionalization reaction was carried out as described in the general procedure (E) by using allyl bromide. After purification by flash column chromatography (silica gel, PE/EtOAc 9.5:0.5), the desired compound **19b** was isolated (34% yield).

Starting from the compound **18b**, the reaction was carried out as described in the general procedure (E) by using methyl iodide. After purification by flash column chromatography, the desired compound 19b was isolated (100% yield) as a beige oil. ¹H NMR (250 MHz, CDCl3): *δ* (ppm) 1.01 (s, 9H); 1.23 (s, 3H); 2.27 (d, 2H, $J = 7$ Hz); 5.07 (m, 2H); 5.51 (s, 2H); 5.75-5.92 (m, 1H); 7.25-7.40 (m, 6H*r*); 7.54-7.56 (m, 4H). 13C NMR (250 MHz; CDCl3): *δ* (ppm) 27.6, 29.6, 37.6, 46.5, 81.1, 118.0, 125.3, 125.6, 127.1, 127.4, 128.2, 128.8, 134.3, 139.0, 141.1, 152.1. IR *ν*max (KBr): 2960, 2924, 2846, 1721, 1598, 1574, 1550. MS (IS): *m*/*z*

388.50 [M + H]⁺. HRMS (IE): m/z [M-[•]C₃H₅]⁺ calcd for C₂₃H₂₄-
NO. 346.1807: found 346.1826 NO₂, 346.1807; found, 346.1826.

8-(*tert***-Butoxycarbonyl)-7,9-diphenyl-8-aza-spiro[4.5]deca-2,6,9-triene (20).** A solution of bisallylic compound **19d** (213 mg, 0.51 mmol) and Nolan's ruthenium catalyst¹⁶ (43 mg, 0.05 mmol) in degassed toluene was refluxed for 15 h (until TLC shows complete conversion of the substrate). Evaporation of the solvent followed by flash chromatography (silica gel, PE/EtOAc 9.5/0.5) provides compounds **²⁰** (100% yield) as a yellow solid: mp 120- 121 °C. ¹H NMR (250 MHz, CDCl₃): δ (ppm) 1.03 (s, 9H); 2.55-(s, 4H); 5.76 (s, 2H); 5.80 (s, 2H); 7.25-7.40 (m, 6H); 7.54-7.58 (m, 4H). ¹³C NMR (250 MHz; CDCl₃): δ (ppm) 27.7, 48.0, 44.5, 81.3, 125.0, 125.6, 125.8, 127.6, 127.7, 128.3, 128.4, 129.4, 139.0, 140.6, 152.4. MS (IS): *^m*/*^z* 386.5 [M ⁺ H]+. HRMS (IE): *^m*/*^z* [M]^{+•} calcd for C₂₆H₂₇NO₂, 385.2041; found, 385.2049.

General Procedure (F) for the Hydrolysis Reaction. 1,5- Diphenyl-pentane-1,5-dione (21a).¹⁸ To a solution of the 1-(*tert*butoxycarbonyl)-2,6-diphenyl-1,4-dihydropyridine (**6**) (0.30 mmol, 100 mg) in EtOAc (2 mL) at room temperature under argon, a 3 N solution of hydrochloric acid (1 mL) was added, and the mixture was stirred for 2 h. The mixture was diluted with H_2O (5 mL), EtOAc (4 mL) was added, and the organic layer was washed with a solution of saturated aqueous Na2CO3. The organic layer was separated and dried (MgSO₄), and the solvent was evaporated. The residue was purified by flash column chromatography (silica gel, PE/EtOAc 9:1) to afford **21a** (100% yield) as a white solid: mp ⁶⁵-⁶⁶ °C. 1H NMR (250 MHz, CDCl3): *^δ* (ppm) 2.15-2.26 (m, 2H); 3.13 (t, 4H, $J = 7$ Hz); 7.43-7.59 (m, 6H); 7.97-8.00 (m, 4H*r*). 13C NMR (250 MHz; CDCl3): *δ* (ppm) 18.8, 37.7, 128.2, 128.7, 133.2, 136.9, 197.4. IR $ν_{\text{max}}$ (KBr): 2970, 2938, 2900, 1692, 1576, 1449. MS (IS): *^m*/*^z* 253.00 [M ⁺ H]+.

General Procedure (G) for the Aromatization Reaction. 2,6- Diphenyl-pyridine (22a).²⁰ To a solution of the 1-(*tert*-butoxycarbonyl)-2,6-diphenyl-1,4-dihydropyridine **6** (0.15 mmol, 50 mg) in dry DCM (0.5 mL) at room temperature under argon, trifluoroacetic acid (1.28 mmol, $100 \mu L$) was added dropwise. The mixture was stirred for 4 h at room temperature. The reaction was quenched with an aqueous solution of saturated $Na₂CO₃$; dichloromethane was then added. The organic layer was separated and dried (MgSO4), and the solvent was evaporated. The crude solid was washed with petroleum ether, then filtrated to afford the desired disubstituted pyridine **22a** (95% yield) as a yellow solid: mp 80- ⁸¹ °C. 1H NMR (250 MHz, CDCl3): *^δ* (ppm) 7.39-7.57 (m, 6H); 7.66-7.69 (m, 2H); 7.77-7.83 (m, 1H); 8.12-8.17 (m, 4H). 13C NMR (250 MHz; CDCl3): *δ* (ppm) 118.8, 127.1, 128.8, 129.1, 137.6, 139.6, 157.0. IR *ν*_{max} (KBr): 2964, 2924, 2872, 1589, 1598, 1567. MS (IS): *^m*/*^z* 232.5 [M ⁺ H]+.

Acknowledgment. The authors thank gratefully Professor Steve Nolan (New Orleans, USA) for his gift of ruthenium metathesis catalyst and palladium catalyst.

Supporting Information Available: Detailed experimental procedures, full characterization of new compounds, 1H and 13C NMR spectra for compounds $1-12$ and $14-22$. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0607360

- (18) Imagawa, H.; Kurisaki, T.; Nishizawa, M. *Org. Lett.* **²⁰⁰⁴**, *⁶*, 3679- 3681.
- (19) Owsley, D. C.; Nelke, J. M.; Bloomfield, J. J. *J. Org. Chem.* **1973**, *³⁸*, 901-903.
- (20) Pena, M. A.; Sestelo, J. P.; Sarandeses, L. A. *Synthesis* **²⁰⁰⁵**, 485- 492.
- (21) Meth-Cohn, O.; Jiang, H. *J. Chem. Soc., Perkin Trans. 1* **1998**, *22*, ³⁷³⁷-3745.

(22) Oda, K.; Nakagami, R.; Niszonohi, N.; Machida, M. *Chem. Commun.* **¹⁹⁹⁹**, 2371-2372.